Journal of Organometallic Chemistry, 77 (1974) 1-25 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Review

CARBON-13 NUCLEAR MAGNETIC RESONANCE SPECTRA OF METAL CARBONYL COMPOUNDS

LEE J. TODD and JOHN R. WILKINSON

Department of Chemistry, Indiana University, Bloomington, Indiana 47401 (U.S.A.)

(Received March 4th, 1974)

Contents

I.	Introduction	1
II.	Methodology for obtaining the ¹³ C NMR spectra of metal carbonyls	2
Ш.	Metal carbonyls without other liga	3
IV.	Metal carbonyls containing other ligance	6
	A. Chromium, molybdenum and tungsten carbonyl derivatives B. Iron, ruthenium and osmium carbonyl derivatives C. Rhodium carbonyl derivatives	6 9 11
v.	¹³ C NMR chemical shift data for the transition metal carbonyl compounds	13
Refe	rences	24

I. Introduction

One of the major difficulties in the study of metal carbonyl compounds has been structure elucidation. In many cases the infrared spectrum of a new metal carbonyl derivative at best could only indicate the presence of terminal and/or bridging carbonyl groups. Generally researchers relied upon a time consuming single crystal X-ray structure determination for definite structural information. With the advent of pulsed Fourier transform NMR equipment, rapid advances in the application of 13 C NMR spectra for the determination of metal carbonyl structures have been made. In addition, by variation of temperature, this powerful new technique has allowed detailed study of the fluxional nature of certain metal carbonyl systems, particularly those which do not have proton-containing ligands.

Although short discussions of "the ¹³ C NMR spectra of organometallic compounds" have appeared previously [1,62] no detailed treatment concerning ¹³ C NMR studies of metal carbonyl compounds per se has appeared. We outline in this review the majority of reported ¹³ C NMR data of transition metal carbonyl compounds through 1973. The various carbonyl carbon shielding trends are discussed in detail. These trends have thus far proven to be very consistent and errors in the literature are easily spotted. In certain cases these errors have been corrected by direct personal communication with the authors.

Several troublesome technical problems in the measurement of metal carbonyl ¹³ C NMR spectra have been encountered such as (1) the slow relaxation times of carbonyl carbon nuclei, (2) the low solubility of some complexes of interest and (3) the quadrupole broadening effects to the carbonyl resonances caused by certain transition metals (e.g. ⁵⁵ Mn and ⁵⁹ Co). The progress that has been made to overcome these problems will also be reviewed.

II. Methodology for obtaining the ¹³ C NMR spectra of metal carbonyls

¹³ C NMR has proved to be a powerful new tool for the study of organometallic compounds. As the technical problems are being overcome the number of reports of the use of this technique for molecular structure elucidation are increasing rapidly. This section is included as an introduction to some experimental problems encountered in obtaining ¹³ C NMR spectra of metal carbonyl complexes and suggested solutions to the problems.

Metal-bonded carbonyl carbons have unusually long T_1 relaxation times. This property in many cases partially undermines the advantages of Fourier transform methods because long recycle times are required between successive pulses. Recently a shiftless relaxation reagent, $Cr(acac)_3$, has been reported [36] which circumvents this problem and permits pulse intervals of 0.5-2 sec. This reagent is kinetically inert and soluble in many organic solvents. No contact shift has been observed at higher concentrations with the use of this reagent. Higher concentrations of $Cr(acac)_3$ do cause some line broadening. In our ¹³ C NMR measurements we generally use 0.07M concentrations of the reagent.

Another problem encountered in obtaining ¹³ C NMR spectra of metal carbonyl derivatives is that many compounds, particularly polynuclear carbonyls, have relatively limited solubilities. This difficulty can be overcome by enriching the carbonyl compound via intermolecular exchange with ¹³ CO. There are several literature sources which deal in part with the kinetics and mechanisms of CO exchange with metal carbonyls [2-8]. However, none of these reviews are very useful in a practical sense when one is confronted with the ^{13}CO enrichment of a new metal carbonyl compound. The first and simplest approach is to stir a sample of the compound in an appropriate solvent under a static atmosphere of ¹³ CO until equilibrium is reached. The choice of solvent can be important and in certain cases an increase in exchange rate has been observed with an increase in the solvent donor ability [9]. Ether solvents are particularly useful in this respect and in addition CO has a relatively high solubility in these solvents. This approach is most useful with metal carbonyl compounds which undergo CO exchange fairly easily. In general this includes molecules which are coordinatively unsaturated, which have bridging carbonyl groups, or compounds containing "hard bases" as ligands. More drastic means which can be used to cause CO exchange are (a) thermal treatment, (b) photochemical treatment [63] and (c) the use of catalytic agents. Catalysts mentioned in the literature are palladium supported on carbon [50] and acids such as trifluoroacetic acid [2,50]. The

Compound	δ(C) (ppm) ^a	
 CS7	192.4	
Chloroform	77.2	
Methylene chloride	53.9	
Benzene	128.6	
Tetrahydrofuran	26.3	
	68.0	
Acetone	30.4	
	205.1	

TABLE 1 CHEMICAL SHIFT VALUES FOR REFERENCE MATERIALS AND SOLVENTS

a TMS = 0 ppm.

choice of these more drastic methods depends upon the lability of the particular compound in question.

The most generally used reference compound at present is tetramethylsilane (TMS). In this review individual carbonyl shieldings ($\delta(C)$ are expressed in parts per million (ppm) relative to TMS. Positive $\delta(C)$ values are at lower field than TMS. In practice the solvent used in the ¹³ C NMR experiment is often also employed as a secondary reference. This mode of operation assumes that the solvent shielding is concentration and temperature independent. In earlier work other compounds such as carbon disulfide and benzene were used as reference materials. In Table 1 are given the $\delta(C)$ values for reference materials and solvents which will be used in this review.

Many of the earlier data were obtained with continuous wave instruments and the limit of error is \pm 0.3 ppm at best. With Fourier transform instruments errors of \pm 0.1 ppm or less can generally be obtained: Considering these errors as well as the errors which inevitably occur when one collects together data from many different laboratories, $\delta(C)$ values will be listed only to one significant figure beyond the decimal point.

There are a number of general references concerning pulsed Fourier transform methods and their specific application to 13 C NMR which we have found useful for many specific problems [1,62,84] and they are included here for the reader's convenience.

III. Metal carbonyls without other ligands

Iron pentacarbonyl was one of the first molecules of this class to be studied by ¹³C NMR [11]. Electron diffraction studies reveal a trigonal bipyramidal structure for this molecule. For this structure two ¹³C resonances would be anticipated. To date only one resonance has been observed for this molecule. Iron contains 2.19% of ⁵⁷Fe $(I = \frac{1}{2})$ and ¹J(⁵⁷Fe⁻¹³C) = 23.4 Hz has been observed for Fe(CO)₅ [13]. This information indicates that there is no intermolecular exchange of carbonyl ligands. The possibilities that still must be considered are (a) rapid intramolecular interchange or (b) an unresolvable difference in shielding of the two types of terminal carbonyl ligands. Attempts to slow down the expected intramolecular site exchange of Fe(CO)₅ at -63, -110, and -170°C have failed to resolve the carbonyl peak into two signals [12,88,14,16].

Fig. 1. The solid state structure of $Co_2(CO)_8$.

Fig. 2. The solid state structure of Rh₄(CO)₁₂.

The ¹³ C NMR of Mn_2 (CO)₁₀ has been difficult to obtain due to quadrupolar broadening effects [⁵⁵ Mn(I = 5/2), 100% natural abundance]. However with a ¹³C-enriched sample two broad signals at 223 and 212.9 ppm were obtained [55].

In the solid state [85] it has been established that $\text{Co}_2(\text{CO})_8$ has a bridge carbonyl structure (Fig. 1), while from infrared studies [86] in solution this form is in equilibrium with the all-terminal carbonyl isomer. The ¹³C NMR spectrum of $\text{Co}_2(\text{CO})_8$ even at -90°C contains only one signal at 203.8 ppm in the terminal carbonyl region [55]. It is suspected that this molecule is undergoing intramolecular site exchange. Thus the observed signal is probably a weighted average of a terminal resonance which would be at slightly higher field (from 6 carbonyl groups) and a bridge resonance at much lower field (from 2 carbonyl groups). It is obvious that a ¹³ C NMR spectrum at a temperature well below -100°C will be needed to obtain a static structure.

While both $Fe(CO)_5$ and $Fe_3(CO)_{12}$ appear to be fluxional at room temperature since each molecule exhibits only one carbonyl resonance, the ¹³ C NMR spectrum of $Ru_3(CO)_{12}$, obtained with a ¹³CO-enriched sample contained two resonances of nearly equal area [55] which can be assigned to the equal number of axial and equatorial terminal carbonyl groups of a static structure as found in the X-ray crystal study of this molecule [87].

The ¹³ C NMR spectrum of ¹³ C-enriched Rh₄ (CO)₁₂ at room temperature consists of a broad featureless peak [18]. At +63° the spectrum was resolved into a 1/4/6/4/1 quintet with a splitting of 17.1 Hz. The limiting low temperature spectrum was obtained at -65°, exhibiting four multiplets of equal intensity [69]. There was a triplet at 228.8 (bridging carbonyls) and three doublets at 183.4, 181.8 and 175.5 ppm. The spectrum is compatible with the four types of carbonyl groups observed for this compound in the solid state (Fig. 2). The doublet at 183.4 ppm has the narrowest line width and was assigned to the apical carbonyl groups on the basis that these carbon nuclei would participate in the simplest local spin system.

The ¹³ C NMR spectra of metal carbonyl anions have not been investigated to any large extent thus far. The presently available data indicates that within an isoelectronic series, shieldings of the anion carbonyls are found consider-

TABLE 2 ¹³C NMR SHIELDINGS OF THE ACYL CARBON OF Z⁺[(CO)₄ Fech]

		· · · · · · · · · · · · · · · · · · ·	
Solvent	Z ⁺	δ(C) (acyl carbon)	
THF	Na ⁺	275.8	
ТНГ—НМРА	Na ⁺	257.6	
THF	N(PPh3)2 ⁺	260.1	

ably down field of the neutral carbonyls. This is seen with the following isoelectronic molecules: $[V(CO_6][Na(diglyme)_2] [15]$ and $Cr(CO)_6$ with shieldings of 225.7 and 212 ppm respectively; $[Ph_3P=N=PPh_3][Co(CO)_4] [55]$ and Ni(CO)₄ with shieldings of 211.2 and 191.6 ppm respectively. A recent study of

the ¹³ C NMR spectrum of the $[(CO)_4 \text{ FeCH}]^-$ ion contains a very important caveat [21]. The spectrum of the anion is markedly dependent on the nature of the cation and its state of solvation. The ¹³ C NMR data in Table 2 illustrates this point. In the presence of strongly coordinating solvents such as hexamethylphosphoramide (HMPA), the sodium ion is tied up and functions like the

Fig. 3. The chemical shift trend of the terminal resonances for the parent metal carbonyl derivatives.

 $N(PPh_3)_2^+$ ion. However in THF solvent alone a tight ion pair, $Na^+ \cdots [O=CFe_1^+)_4^-$ is formed which significantly deshields the acyl carbon atom.

Η

The chemical shift trend of terminal carbonyl resonances for the parent metal carbonyl compounds is presented in Fig. 3. In certain cases (Ir and Os) values for the parent carbonyls are not presently available and a value of a substitute derivative was used. Fortunately in these particular cases rather narrow chemical shift ranges are anticipated. The $\delta(C)$ value for vanadium was that of V(CO)₆ We would anticipate a more shielded value for a "neutral" vanadium carbonyl. A marked increase in shielding is observed for the heavier metal carbonyls of each period. We interpret this as being due to a gradual increase in donor/acceptor ratio (decreased π -back bonding) as one progresses from left to right within a given period. This may be caused by the increased effective nuclear charge experienced by the metal d electrons from left to right within a period which decreases the extent of π -back bonding.

Another trend observed in Fig. 3 is the increase in carbonyl shielding as one progresses down a given group in the periodic table. This is most clearly seen in Group VIB. The carbonyl shieldings of $Cr(CO)_6$, $Mo(CO)_6$ and $W(CO)_6$ are 212, 202 and 192 ppm respectively [17,20]. The same trend is apparent, although somewhat less clearcut, in the other groups. The ambiguity is due to the rather large changes in structure and degree of aggregation of the other transition metal ca. Jonyls.

IV. Metal carbonyls containing other ligands

A. Chromium, molybdenum and tungsten carbonyl derivatives

Substituted metal carbonyl compounds of these metals have been the most extensively studied thus far via ¹³ C NMR. This is due to the relative ease with which they can be prepared, their ¹³ C NMR measured, and the results interpreted. In a study of the complexes of the general formula LW(CO)₅ [L = P-(OC₆H₅)₃, P(O-n-C₄H₉)₃, P(C₆H₅)₃, As(C₆H₅)₃, Sb(C₆H₅)₃, NH₂(C₆H₁₁) and others], a linear correlation was found to exist between the Cotton—Kraihanzel derived carbonyl stretching force constants and the corresponding carbonyl carbon shieldings [17]. The most shielded carbonyl has the largest force constant. This same type of linear relationship has been observed for changes of L with a given metal in several other classes of complexes [i.e. LCr(CO)₅, LMo-(CO)₅ and L(CO)₂ Fe(π -C₅H₅)] [20,23,38]. These relationships suggest that changes in the interaction of metal *d*-orbitals with carbonyl π^* orbitals strongly influence carbonyl carbon shielding.

Several trends can be seen in the carbonyl carbon shielding data (see Section V). (Trend 1) The carbonyl resonances of a substituted complex are at lower field than the carbonyl shielding of the parent metal hexacarbonyl. This trend has been interpreted as being due to the relatively high value of the σ -donor/ π -acceptor ratio of most ligands compared with CO [22]. (Trend 2) The carbonyl trans to a substituent L is more deshielded than the carbonyls that are *cis*. This suggests that the *trans* carbonyl obtains metal *d*-orbital electron density (via π -back bonding) more readily than most substituent ligands. Comparison of the

trans carbonyl ¹³C chemical shifts of a series of $LCr(CO)_5$ derivatives shows the following order of decreased shielding: $L = CO > P(OPh)_3 > CH_3C_6H_4NC$

It is suggested that this is also the order of increasing σ -donor/ π -acceptor ratio of these ligands. Thus the yilde ligand at the far right of the series is a good donor but a poor acceptor. The order of decreased shielding is the same for LW(CO)₅ derivatives also. (Trend 3) Successive replacement of CO by other ligands results in the remaining carbonyl resonances being situated at even lower field. A good example of this trend is seen in the series ($C_2 H_5$)₃ PW(CO)₅, trans-[($C_2 H_5$)₃ P]₂ W(CO)₄ and fac-[($C_2 H_5$)₃ P]₃ W(CO)₃ which have the shieldings 200.2 (trans), 198.5 (cis); 204.7; and 212.4 ppm respectively [20,71]. (Trend 4) Changing the metal from Cr to Mo and Mo to W maintaining the same array of ligands results in an upfield shift of the carbonyl shieldings of about 10 ppm for each change. This is the same trend noted earlier for the parent metal carbonyls.

Finer details of carbonyl shielding trends are observed in $\binom{R}{R}$ C)M(CO)_s

derivatives for which a large number (approximately 50 compounds) have been reported.

Substitution of an amino group for the methoxy group in $CH_3O_{CH_3}C=Cr(CO)_5$

appears to make the carbone ligand a better electron donor. This results in a downfield shift of the carbonyl resonances in the amino derivative. Although the change is small due to the remoteness of the substituent from the carbonyl carbons, the same trend is observed in several cases. Most interesting is the fact that the *cis*-carbonyl resonance moves downfield to a larger extent than the *trans* shielding. This can be rationalized by assuming that π -back bonding to the *trans* carbonyl has approached the "saturation point" in the carbone complex and that additional electron density donated to the metal (in the case of the amino carbone derivative) is transmitted preferentially to the *cis* carbonyls via π -back donation.

The shielding of a variety of $(\pi$ -arene)M(CO)₃ derivatives have been reported [15]. Within the limits of the data, the π -arene group appears to have nearly the same shielding effect as three monodentate R₃ P ligands in a fac-L₃ M(CO)₃ derivative. For example, one can compare the shieldings of π -mesitylene tricarbonyltungsten and fac-[(C₂ H₅)₃ P]₃ W(CO)₃ which have the values 212.6 and 212.4 ppm respectively. Comparison of the carbonyl shieldings of a series of $(\pi$ -C₆H₅X)Cr(CO)₃ derivatives [15] indicates that deshielding increases as the electron donating ability of the X substituent increases. This is the same relationship observed earlier in this section for LM(CO)₅ derivatives.

At room temperature the triene ligands of both tricarbonyl-1,3,5-cycloheptatrienechromium(0) and the corresponding molybdenum(0) complex ap-

Fig. 4. A structure of tricarbonyl-1,3,5-cycloheptatrienechromium(0) showing rotation about the pseudo three-fold axis.

Fig. 5. ¹³C NMR spectrum (carbonyl region only) of $[(\pi-C_5H_5)Fe(CO)_2]_2$ at various temperatures.

pear to be rotating about a pseudo three-fold triene—metal axis (see Fig. 4) at a rate faster than the ¹³ C NMR time constant [39,55,71]. The expected four carbon resonances of the olefin ligand are seen but only one resonance is found for the carbonyl groups. However at lower temperatures [-59° (Cr derivative), -51° (Mo derivative)] this rotation is slowed and two carbonyl resonances in a 1/2 ratio are observed [45]. It is proposed that in the static conformation the unique carbonyl is *trans* to the 3,4-double bond of the olefin.

Aminocarbene $M(CO)_5$ (M = Cr or W) complexes add HCl or HBr to form derivatives whose structure is still uncertain [74]. Conductivity neasurements favor the salt-like structure (b).

or
$$[(CO)_5 M - X^-] [_{R'}^{R} N = CHR''^+]$$
 (b)

The carbonyl shielding data of $(C_6 H_{11} NH_2) W(CO)_5$ which would be like structure (a) and the shielding data of $(n-C_4 H_9)_4 N[W(CO)_5 I]$ which would be like structure (b) are very similar (see Section V). Thus it does not seem possible with the available data to differentiate between the proposed structures on the basis of carbonyl shieldings.

B. Iron, ruthenium and osmium carbonyl derivatives

Again in this group of metals one observes an increase in carbonyl carbon shielding as the atomic weight of the metal increases. The reported terminal carbonyl shieldings for the iron, ruthenium and osmium derivatives have the ranges 221-202, 199-188 and 182-177 ppm respectively.

Compounds of the type $(\pi$ -C₅ H₅)Fe(CO)₂ X are the largest class of iron derivatives to be studied thus far. For molecules with an iron-carbon Fe-X bond, the carbonyl shielding is found to obey a linear relationship with Taft σ_I values. For strongly electron-withdrawing X groups the carbonyl carbon resonances are found at higher field. Thus as the available electron density on the metal decreases there is less metal carbonyl back bonding. This trend is consistent with the correlations observed in Group VI metal carbonyls. For molecules where the X group, for an example, is GeR₃ or PB₁₀ H₁₂, which have Fe-Ge or Fe-P bonds, there is the added possibility of d_{π} - d_{π} back donation to these groups from the metal. The observed carbonyl shieldings for these $(\pi$ -C₅H₅)Fe(CO)₂X derivatives are at higher field that one would expect based solely on electronegativity arguments.

It has been well known for some time through ¹H NMR, infrared and X-ray studies that $(\pi-C_5 H_5)_2 Fe_2 (CO)_4$ can exist in *cis* and *trans* bridged conformations which are interconverting at room temperature and are static at low temperatures. Recently the dynamic properties of this molecule were revealed in more detail by a variable temeprature ¹³ C NMR study [16]. A schematic line drawing of the ¹³ C NMR results in the carbonyl region are illustrated in Fig. 5. At -85°C there are two carbonyl resonances at 274.7 (bridge) and 210.5 ppm (terminal). When comparing the chemical shifts for the carbonyl derivatives of one transition metal, bridging carbonyl resonances are generally found at lower field than terminal carbonyl resonances. At -73° a third resonance appears at 242 ppm which is centered between the other two peaks. This unusual pattern is explained by the preferential bridge-terminal carbonyl exchange of one of the isomers (the authors prefer the *trans* isomer). At -59° the second isomer begins to participate in bridge-terminal interchange and at some temperature, which is unclear from the

Fig. 6. Schematic diagram of the proposed reaction coordinate for interconversion of cis- and trans- $[(\pi-C_5H_5)Fe(CO)_2]_2$

available ¹³ C NMR data, *cis*—*trans* interconversion occurs. In Fig. 6 is shown a proposed reaction coordinate scheme to explain the ¹³ C NMR results. The proposed mechanism involves opening up of a bridged isomer to an all terminal-carbonyl intermediate and then *cis*—*trans* interconversion via rotation about the iron—iron bond.

It has been observed that *cis*—*trans* interconversion of $(\pi$ -C₅ H₅)₂ Mo₂ (CO)₆, presumably by rotation about the Mo—Mo metal bond, is a relatively high energy process [51]. This would suggest that such a barrier exists for $(\pi$ -C₅ H₅)₂ Fe₂ (CO) The iron derivative will have a shorter M—M distance but less interligand steric interactions than the molybdenum compound. Which variable is most important is not known at present. It has been suggested on the basis of a ¹³C NMR study that bridge-terminal exchange occurs simultaneously with metal—metal bond rotation for $(\pi$ -C₅ H₅)₂ Fe₂ (CO)₃ P(OC₂ H₅)₃ [81]. In addition it is suggested [81] that at low temperature $[(\pi$ -C₅ H₅)Ru(CO)₂]₂ exists as *cis* and *trans* nonbridged isomers. Further clarification of these processes via ¹³C NMR studies are possible and should be forthcoming soon.

The ¹³C NMR spectra of several (polyolefin)hexacarbonyldiiron derivatives have been studied at various temperatures [79]. The room temperature ¹³C NMR spectra of (cycloheptatriene)hexacarbonyldiiron and (bicyclo[6.1.0]-2,4,6-nonatriene)hexacarbonyldiiron each contain two carbonyl resonances with 2/1 relative intensities. These data together with a symmetric pattern for the¹³ C olefin carbon resonances and invariant ¹ H NMR spectra at various temperatures suggests that these molecules are not fluxional at room temperature. The structure of (cycloheptatriene)hexacarbonyldiiron has been determined by a single crystal X-ray study [80] and is illustrated in Fig. 7a. If this were the static structure for (C₇ H₈)Fe₂ (CO)₆ in solution three carbonyl resonances of equal area would be expected. The author proposes that two of these resonances are accidentally overlapped to give the two resonances with 2/1 relative intensities. The ¹³ C NMR spectra of the related three molecules shown in Fig. 7b-d each contain only one carbonyl carbon resonance at 30° C [79]. However at --130° the ¹³ C NMR spectrum of the compound in Fig. 7d displays six carbonyl re-

Fig. 7. (a) the solid state structure of $(C_7H_8)Fe_2(CO)_6$; (b)-(d) schematic representation of other (triene)-Fe_2(CO)_6 derivatives; (e) proposed low temperature static structure of (bicyclo[6.2.0]-2,4,6-decatriene)Fe_2(C

sonances. This suggests that at 30° the molecule is fluxional and at -130° C the complex has an unsymmetrical static structure possibly like that shown in Fig. 7e.

Attempts to obtain static structure ¹³ C NMR spectra of $Fe(CO)_5$ (-170°) [14] and (CO)₃ $Fe(Me_2 PCH_2 CH_2 PMe_2)$ (-80°) [48] were not successful. The first successful example of this type is the ¹³C NMR spectrum of tricarbonyl (cyclooctatetraene)iron taken at -120° which shows it to be in a static conformation [47]. The spectrum contains two signals in the carbonyl carbon region at 212.4 and 210.3 ppm with intensity ratio 2/1 respectively. The olefin ligand is also static at the low temperature and displays four olefin carbon resonances. It is suggested by the authors that the carbonyl interchange process is independent of the ring atom interchange process at higher temperatures.

Recent reports of the ¹³ C NMR spectra of derivatives of $\operatorname{Ru}_3(\operatorname{CO})_{12}$ show the power which this technique will have for structure elucidation of this interesting class of static molecules. As indicated previously, $\operatorname{Ru}_3(\operatorname{CO})_{12}$ exhibits two carbonyl resonances of equal intensity at 198.8 and 188.7 ppm. The molecule H₃ Ru₃ (CO)₉ CMe, for which the structure in Fig. 8 is proposed, exhibits two carbonyl resonances at 190.1 (area 1) and 189.3 (area 2) ppm [54]. If this structure proves correct, the ¹³ C NMR data allows assignment of equatorial carbonyls to the 188 ppm region in this type of molecule.

C. Rhodium carbonyl derivatives

To date there has been only a limited number of cobalt carbonyl compounds studied. This is due in large part to the sizable quadrupole moment of the cobalt nucleus [⁵⁹ Co(100%), I = 7/2] which causes the carbonyl ¹³ C signals to be quite broad. For example, ¹³ C NMR studies of YCCo₃ (CO)₉ [Y = halogen or alkyl] give only one broad carbonyl resonance. Based on the structure of these compounds, one would expect two carbonyl resonances in a 2/1 ratio which probably would be the case if the resolution were better. Quadrupole broadening is not a problem with rhodium carbonyls [¹⁰³Rh(100%), $I = \frac{1}{2}$]. In addition to variation of shielding with structure, ¹ $J(^{103}$ Rh—¹³ C) coupling constants can be used to acquire additional structural information. This can be illustrated by the following two examples. In the ¹³ C NMR spectrum of the novel "diphenyl carbene" complex [Rh(CPh₂)Cl (C₅ H₅ N)]₂ CO both the CO and carbon resonances appear as sharp

Fig. 8. Proposed structure of CH₃CRu₃(CO)₉H₃.

Fig. 9 The solid state structure of $[Rh(CPh_2)Cl(C_5H_5N)]_2CO$. Only the nitrogen atoms of the pyridine rings are included for clarity.

Fig. 10 The solid state structure of $(\pi - C_5 H_5)_2 Rh_2(CO)_3$.

triplet signals at room temperature and at -85° C [28]. The carbonyl resonance is at 206.5 ppm which is in the region where bridging carbonyl groups are found. These data suggest that the molecule is static during the NMR measurements and that the carbonyl and carbone ligands are bridging both rhodium atoms. A subsequent X-ray diffraction study confirmed this NMR finding. The structure of this complex is illustrated in Fig. 9.

The ¹³C NMR of the carbonyl region of trans- $(Ph_3P)_2Rh(CO)Cl$ at -14° exhibits a doublet with triplet structure [89]. The doublet is due to ¹⁰³ Rh-¹³C coupling and the triplet to ³¹ P-¹³C coupling. As the temperature is increased the doublet loses the triplet fine structure which suggests rapid phosphine exchange. At + 94° the carbonyl resonance becomes a singlet suggesting carbonyl exchange.

Recent ¹³ C NMR studies of polynuclear rhodium carbonyl compounds has partially clarified the interesting dynamic properties of these molecules in solution. One of the first compounds studied in this area was $(\pi$ -C₅ H₅)₂ Rh₂ (CO)₃ which has the solid state structure shown in Fig. 10. At 20° C the carbonyl region of the ¹³ C NMR spectrum of this compound contains only a sharp triplet at 203.8 ppm ($J(^{103}Rh-^{13}C)$ 43 Hz) [37]. This suggests that the molecule is unde going rapid intramolecular exchange of the two types of carbonyl groups. At -80° the carbonyl region of the ¹³C NMR spectrum changes to a sharp triplet at 231.8 ppm ($J(^{103}Rh-^{13}C)$ 45 Hz) (area 1) and a doublet at 191.8 ppm ($J(^{103}Rh-^{13}C)$ 83 Hz) (area 2). The low temperature result correlates well with the solid state structure and strongly suggests that the low field resonance is due to the bridging carbonyl group. As expected the weighted average of the low temperature chemical shifts is in agreement with the chemical shift value at 20°. Also there is consistency in the weighted average of the low temperature coupling constants (see Section V).

A NMR study of a trinuclear rhodium complex which apparently contains

Fig. 11. The solid state structure of $(\pi - C_5 H_5)_3 Rh_3 (PhC \equiv CPh) CO$.

a carbonyl group bridging all three metal atoms has been reported [49]. The room temperature ¹³C NMR spectrum of $(\pi$ -C₅H₅)₃Rh₃(PhC=CPh)CO which is ¹³ C-enriched in the carbonyl group exhibits a quartet signal at 236 ppm $(J(^{103}Rh-^{13}C)$ 38.7 Hz) for the carbonyl carbon. At -88° the carbonyl signal changes to a triplet with doublet character. These ¹³C NMR data suggest that the carbonyl group is in a static unsymmetrical triple-bridging position. The carbonyl carbon is more strongly coupled to two of the rhodium nuclei [triplet; $(J(^{103}Rh-^{13}C)$ 43.7 Hz)] and less strongly coupled to the third rhodium nucleus [doublet; $(J(^{103}Rh-^{13}C)$ 28.4 Hz)]. These low temperature results are consistent with the unsymmetrical triple-bridging configuration of the carbonyl group (see Fig. 11) found in the X-ray structure study.

V. ¹³ C NMR chemic	al shift data	for the	transition	metal	carbonyl	compounds
-------------------------------	---------------	---------	------------	-------	----------	-----------

Compound	Solvent ^a	δ(CO)	ь	Refe: ences and remarks
		$\delta(CO)_{trans}$	δ(CO) _{cis}	
Vandium compounds				
[V(CO) ₆][Na(diglyme) ₂]	THF	225.7	1	$15,19 (J(^{51}V - ^{13}C) 116Hz)$
Chromium compounds				
Cr(CO) ₆	CH ₂ Cl ₂	212.5	5	17
	CH ₂ Cl ₂	211.7	ſ	55
	CHCl3	211.2	3	15
	CDCl ₃ /C ₆ F ₆	212.1		20, 22
	CCl ₄	210.7	1	55
	C ₆ F ₆	214.6	5	20
	THF	212.5		15
	CH ₃ CN	212,5	5	55
	CHCl ₃	212,3	k i i i i i i i i i i i i i i i i i i i	71
(CH ₃ CN)Cr(CO) ₅	CH ₂ Cl ₂	219.2	213.9	55
Ph ₃ PCr(CO) ₅	CHCl ₃	221.3	216.5	15
(PhO)3PCr(CO)5	CHCl ₃	217.5	213.8	15
trans-[(MeO)3P]2Cr(CO)4	CH ₂ Cl ₂	219.3	5	55 (J(³¹ P- ¹³ C) 19.6 Hz)

Compound	Solvent ^a	δ(CO)	ь	References and remarks	
		$\delta(CO)_{trans}$	δ(CO) _{cis}		
trans-[{PhO) ₃ P] ₂ Cr(CO) ₄	CHCl ₃	216.6		15	
(CO) ₅ CrC(NH ₂)Me	CHCl ₃	223.1	217.4	23	
(CO) ₅ CrC(OMe)Me	CH ₂ Cl ₂	223.8	216.7	55	
	CHCl3	223.6 ^d	217.4 ^d	24, 22, 23, 30	
	THF	224.3 ^d	217.3^{d}	55. 24	
	CAHA	223.5 ^d	216.7^{d}	55, 25	
(CO)cCrC(MeNH)Me	THF	223	218	24	
(CDCl3/C6F6	224.4	219.2	22	
(CO)_CrC(OMe)C_H_	CHCl ³	224.0	216.4	31	
$(CO)_c CrC(OEt)Me$	2-2-1-2 7HF	226	217	24	
(00)30-0(02)200	CHCla	223.4	216.3	23	
	CECh	224	218	24	
(CO)_CTC(NMe_)Me	THE	224	218	24	
(00)3010(111102)110	(CH-)+CO	 994 4	218 9	74	
(CO) + CrC(NH+)Th ^b	CDCl ₂ /CcFc	224.4	220.8		
$(CO)_{c}C(NH_{c})F_{c}^{c}$		220.2	219.5	22	
$(CO)_{2}CC(i_{1}Pr)M_{2}M_{2}$	THE	227.1	213.5	22	
$(CO)_{CO}($	THE	224.0	210.0	2 1	
(CO)SCIC(NH2)-p-BrC6H4	THE	224.0	218.1	23	
	CHCI3	223.2	216.9	23	
c_{12} -(CO) ₄ Cr[C(SMe) ₂] ₂	C ₆ F ₆	227.0	215.9	68, 40	
(CO) ₅ CrC(NH ₂)Ph	CHCl ₃	223.4	217.3	23	
(a) a a a a b	THF CDCL (C D	224.4	218.5	23	
(CO) ₅ CrC(OEt)Th ^o	CDCl ₃ /C ₆ F ₆	224.9	218.7	22	
(CO) ₅ CrC(OEt)Fu [°]	CDCl ₃ /C ₆ F ₆	225.5	218.4	22	
(CO) ₅ CrC(OMe)-p-BrC ₆ H ₄	CHCl ₃	223.7	215.9	23	
(CO) ₅ CrC(OMe)-p-ClC ₆ H ₄	$CDCl_3/C_6F_6$	224.9	217.3	22	
	CHCl ₃	223.7	215.9	23	
$(CO)_5 CrC(OMe)m-ClC_6H_4$	CHCl ₃	223.6	215.7	23	
(CO) ₅ CrC(OMe)-p-FC ₆ H ₄	CHCl ₃	223.6	216.1	23	
(CO) ₅ CrC(OMe)Ph	C ₆ H ₆	224.6	216.7	25, 26	
	CDCl ₃ /C ₆ F ₆	226.0	218.4	22	
	C ₆ H ₆	225.0	217.0	24	
	CHCl ₃	224.1	216.1	23	
(CO) ₅ CrC(NH ₂)-p-MeC ₆ H ₄	THF	224.4	218.6	23	
	CHCl ₃	223.7	217.5	23	
(CO) ₅ CrC(MeNH)Ph	THF	224.0	218.0	24	
	(CH ₃) ₂ CO	224.6	218.4	74	
$(CO)_5 CrC[N(CH_2)_4] CH_3$	C ₆ H ₆	223.8	218.7	74	
(CO) ₅ CrC[N(CH ₂) ₄]Ph	(CH ₃) ₂ CO	224.7	218.5	74	
(CO) ₅ CrC(OMe)-p-CF ₃ C ₆ H ₄	CHCl ₃	223.7	215.5	23	
(CO) ₅ CrC(OMe)- <i>m</i> -CF ₃ C ₆ H ₄	CHCl ₃	223.6	215.6	23	
(CO) ₅ CrC(OMe)-p-MeC ₆ H ₄	CHCl ₃	223.8	216.3	23	
(CO) ₅ CrC(OEt)Ph	CHCl ₃	224.2	216.1	23	
	THF	226.0	218.0	24	
(CO) ₅ CrC(OMe)-p-OMeC ₆ H ₄	CHCl ₃	223.7	216.8	23	
	$CDCl_3/C_6F_6$	225.5	218.4	22	
(CO) ₅ CrC(OMe)- <i>m</i> -OMeC ₆ H ₄	CHCl3	223.9	215,8	23	
(CO) ₅ CrC(NMe ₂)Ph	$CDCl_3/C_6F_6$	225.2	218.7	22	
	(CH ₃) ₂ CO	224.6	218.2	74	
(CO) ₅ CrC(NC ₄ H ₈)Th ^b	CDCl ₃ /C ₆ F ₆	224.9	218.7	22	
(CO) ₅ CrC(NC ₄ H ₈)Fu ^c	CDCl ₃ /C ₆ F ₆	225.5	219.2	22	
(CO) ₅ CrC(NHC ₆ H ₁₁)Et	CDCl ₃ /C ₆ F ₆	224.4	219.8	22	
(CO)5CrC(NC4H8)Ph	CDCl ₃ /C ₆ F ₆	225.5	219.2	22	
(CO)5CrC(NC5H10)Ph	CDCl3/C6F6	225.5	218.4	22	
(CO)5 CrC(OEt)ferrocenyl	CDCl ₃ /C ₆ F ₆	224.1	218.7	22	

Compound	Solvent ^a	δ(CO) ^b		References and remarks	
		δ(CO) _{trans}	δ(CO) _{cis}		
[(CO) ₅ CrC(O)Th] NMe4 ^b	(CH ₃) ₂ CO	227.6	223.6	22	
(π-C ₆ H ₆)Cr(CO) ₃	CH ₂ Cl ₂	223.8	:	30	
	CH ₂ Cl ₂	233.3	1	40	
(π-ClC ₆ H ₅)Cr(CO) ₃	CH ₂ Cl ₂	231.9	i i i	40	
(π-FC ₆ H ₅)Cr(CO) ₃	CH_2Cl_2	232.0	•	40	
$(\pi-\mathrm{NH}_2\mathrm{C}_6\mathrm{H}_5)\mathrm{Cr}(\mathrm{CO})_3$	CH ₂ Cl ₂	234.6	i	40	
$(\pi-\text{MeC}_6\text{H}_5)\text{Cr}(\text{CO})_3$	CH_2Cl_2	233.6		40	
$(\pi-\text{MeOC}_6\text{H}_5)\text{Cr}(\text{CO})_3$	CH ₂ Ql ₂	233.5	•	40	
$(\pi - \text{MeCO}_2 C_6 H_5) \text{Cr}(\text{CO})_3$	CH ₂ Cl ₂	231.2		40	
$(\pi - Me_2 N C_6 H_5) Cr(CO)_3$		235.0		40	
$(\pi - m - Bu \cup C_6 H_5) Cr(C \cup)_3$		233.0	1	40	
(n-mesitylene)Cr(CO) ₃		230.1		39, 71	
(<i>π</i> -durene)Cr(CO) ₃	CH ₂ Cl ₂	230.0		39 51	
(They amothy lbergard) Cr(CO).	CH-CL	235.3		71	
$(\pi_{\text{intrancel}}^{\text{intrancel}}, 2)$ dimethylindene). $Cr(CC)$		230.3	•	/1 50	
$(\pi$ - α and		200.0	,	32 20	
(a-cycloneptamene)CI(CO)3		202.1		39	
	(CH3)2CO	202.0	, 990 1	$45, -10^{\circ}$	
	(013)200	241.0	230.1		
	CH-CI-	(area 1)	(area 2)	71	
(CO)-CrCNCH(Mea)		232.1	916 3	71 99	
$(CO)_{c}CrCN(p-MeC_{c}H_{A})$	CDCla/CeFe	218.7	216.5	22	
Ph					
	(CH ₃) ₂ CO	228.5	223.8	26	
<pre>\N</pre> {[1,7-B9H8CHPCr(CO)5]2Fe}- (Me4N)2 (norbornadiene)Cr(CO)4	CH ₃ CN CH ₂ Cl ₂	223.9 234.5	217.5 226.8	59 <i>cis</i> (J(³¹ P— ¹³ C) 12 Hz 71	
$[(CO)_{S}CrBr][Me_{2}=CHMe]$	(CH ₃) ₂ CO	225.1	216.9	74	
[(CO) ₅ CrBr][N=CHMe]	(CH ₃) ₂ CO	225.2	217.0	74	
[(CO) ₅ CrBr][Me ₂ N=CHPh] [(CO) ₅ CrBr][Me ₂ N=CHPh]	(CH ₃) ₂ CO (CH ₃) ₂ CO	225.5 225.6	217.3 217.6	74 74	
[(CO)5CrBr] [N=CHPh]	(CH ₃) ₂ CO	225.7	217.7	74	
[(CO)5CrCl] [◯ N=CHMe]	(CH3)2CO	223,8	217.6	74	
$Na[\pi-C_5H_5Cr(CO)_3]$	THF	246.7		15	
Molybdenum compounds					
Mo(CO)6	CH ₂ Cl ₂	202.0		17	
	CHCI3	200.7		15	
	CDCI3/C6F6	202.0		20	
		204.1		$\frac{20}{71}$ ($\frac{13}{10}$ C $\frac{13}{10}$ C $\frac{13}{10}$	
(MeO)3PM0(CO)5	neat	204.1	206.4	$20 \ trans(J({}^{31}P_{-}{}^{13}C) 18.3Hz)$	
(EtO) ₃ PMo(CO) ₅	neat	208.7	206.8	$cis(J(^{-P}-^{13}C) 7.3 Hz)$ 20 trans $J(^{31}P-^{13}C) 18.9 Hz$ $cis I(^{31}P-^{13}C) c r Hz$	
(i-PrO)3PMo(CO)5	neat	209.7	206.3	20, 30 $trans(J^{31}P_{-}^{13}C) 12.2 Hz)$ $cis(J^{31}P_{-}^{13}C) 14.6 Hz)$	

Compound	Solvent ^a)) ^b	References and remarks	
		δ (CO) _{trans}	δ(CO) _{cis}		
Ph ₃ PMo(CO) ₅		211.0	206.5	20, 33	
(diphos)Mo(CO) ₄	$CDCl_3/C_6F_6$	210 218.5	.3 210.6	$\begin{array}{c} 20(J^{**}P^{-**}C) & 13.4 \text{ Hz} \\ 20 \ trans(J(^{31}P^{-13}C) & 24 \text{ Hz}) \\ cis(J(^{31}P^{-13}C) & 8.4 \text{ Hz}) \end{array}$	
(π-cycloheptatriene)Mo(CO) ₃	CH ₂ Cl ₂	220	.5 ^d	39, 55, 71	
	(CH ₃) ₂ CO	220	.7	45 { 27°C	
	(CH ₃) ₂ CO	229.2	217.9	-51°C	
		(area 1)	(area 2)		
$[(\pi-cycloheptatrienyl)Mo(CO)_3]PF_6$	CH ₃ CN	206.	.7	55	
(π-m-xylene)Mo(CO)3	CHCI3	223.	.1	30	
$(\pi$ -mesitylene)Mo(CO) ₃	CH ₂ Cl ₂	223.	.7	39, 71	
(π-durene)Mo(CO) ₃	CH ₂ Cl ₂	224	.4	39, 71	
$(\pi$ -hexamethylbenzene)Mo(CO) ₃	CH ₂ Cl ₂	225	.9	71	
(π-nor`)ornadiene)Mo(CO)4	CHCl ₃	214.8	218.4	19	
	CH ₂ Cl ₂	214.4	217.8	19	
	CH ₂ Cl ₂	215.0	218.0	71	
$[(\pi - C_5 H_5)Mo(CO)_3]_2$	CH ₂ Cl ₂	233.9	227.1	55 (broad resonances)	
	CH ₂ Cl ₂	233.7	225.2	-85°C	
		(area 1)	(area 2)	55, 100° G	
(T.C.H.)Ma(CO), NO	<i>p</i> -xylene	228	od	10 55 15	
$(\pi - \zeta_{2} H_{2}) MO(CO)_{2} NO$		995	. 9 Л	19, 33, 13	
[7, 9-B ₉ H ₁₀ CHPMo(CO) ₅]Me ₄ N H Ph ₃ P	CH ₃ CN	209.7	205.1	58, 59 $trans(J^{31}(P-^{13}C) 26 H)$ $cis(J(^{31}P-^{13}C) 8 Hz)$	
N		218	.4	55	
(CO)3Mo[]3Mo(CO)3 (n-C4H9)4N[Mo(CO)5I]	CHCl ₂	214.4	202.4	55	
Tungsten complexes					
W(CO)	CHaCha	192	1	$17(J(^{183}W-^{13}C))$ 126Hz)	
	CHCl ₃	191.	4	15	
	CDCl ₃ /C ₆ F ₆	192.	1	20, 22 $(J(^{183}W-^{13}C) 125Hz)$	
	66F6	193.	7	20 ($J(^{183}W-^{13}C)$ 125Hz)	
	CHCl ₃	191.	9	71 (J(¹⁸³ W— ¹³ C) 126Hz)	
(MeO)3PW(CO)5	neat	199.5	196.5	20 $trans(J(^{183}W-^{13}C) 139.1H)$ $cis(J(^{183}W-^{13}C) 125.1 Hz)$ $trans(J(^{31}P-^{13}C) 37.2 Hz)$ $cis(J(^{31}P-^{13}C) 11.6 Hz)$	
	neat	198.8	196.2	71 $trans(J(^{183}W-^{13}C) 135 Hz)$ $cis(J(^{183}W-^{13}C) 123 Hz)$ $trans(J(^{31}P-^{13}C) 36 Hz)$ $cis(H(^{31}P-^{13}C) 10 Hz)$	
(C ₆ H ₁₁ NH ₂)W(CO) ₅	CH ₂ Cl ₂	201.9	199.1	17, 20 $cis(J(^{183}W-^{13}C))$ 132 Hz)	
Et ₃ PW(CO) ₅		200.2	198.5	20 $trans(J(^{183}W_{-13}C) 140 Hz)$ $cis(J(^{183}W_{-13}C) 127 Hz)$ $trans(J(^{31}P_{-13}C) 19 Hz)$ $cis(J(^{31}P_{-13}C) 6 Hz)$	

Compound	Solvent ^a	. δ(CO) ^b		References and remarks	
		$\delta(CO)_{trans}$	δ(CO) _{cis}		
	neat	200.2	198.5	71 $trans(J(^{183}W-^{13}C) 142 Hz)$ $cis(J(^{183}W-^{13}C) 129 Hz)$ $trans(J(^{31}P-^{13}C) 19 Hz)$	
(EtO)3PW(CO)5	neat	199.6	197.2	$\begin{array}{c} cis(J(^{31}\text{P}-^{13}\text{C}) \ 6 \ \text{Hz})\\ 20 \ trans(^{183}\text{W}-^{13}\text{C}) \ 138.5 \ \text{Hz})\\ cis(J(^{183}\text{W}-^{13}\text{C}) \ 125.1 \ \text{Hz})\\ trans(J(^{31}\text{P}-^{13}\text{C}) \ 36.6 \ \text{Hz})\\ \end{array}$	
(n-Bu) ₃ PW(CO) ₅	neat	200.4	198.6	$\begin{array}{c} cis(J(^{13}P_{-}^{-13}C) \ 10.9 \ Hz) \\ 20 \ trans(J(^{183}W_{-}^{-13}C) \ 142.1 \ Hz) \\ cis(J(^{183}W_{-}^{-13}C) \ 124.4 \ Hz) \\ trans(J(^{31}P_{-}^{-13}C) \ 18.9 \ Hz) \\ cis(J(^{31}P_{-}^{-13}C) \ 7.3 \ Hz) \end{array}$	
	$CDCl_3/C_6F_6$	200.4	198.6	22 $trans(J(^{183}W-^{13}C) 140 Hz)$ cis(J($^{183}W-^{13}C) 122 Hz$)	
(n-BuO)3PW(CO)5	CH ₂ Cl ₂	198.8	196.1	17, 20 $trans(J(^{31}P-^{13}C) 36 Hz)$ $cis(J(^{31}P-^{13}C) 9 Hz)$	
[(n-BuO) ₂ Ph]PW(CO) ₅	CH ₂ Cl ₂	200.0	196.9	17 trans $(J(^{31}P-^{13}C) 29 Hz)$ cis $(J(^{31}P-^{13}C) 9 Hz)$	
[(n-BuO)Ph ₂]PW(CO) ₅	CHCl ₂	199.0	197.5	17 trans(J ³¹ P-1 ³ C) 27 Hz) cis(J(³¹ P-1 ³ C) 9 Hz)	
Ph3PW(CO)5	CH ₂ Cl ₂	199.8	198.0	17, 20 $cis(J(^{183}W-^{13}C) 129 Hz)$ $trans(J(^{31}P-^{13}C) 22 Hz)$ $cis(J(^{31}P-^{13}C) 7 Hz)$	
(PhO)3PW(CO)5	CH ₂ Cl ₂	197.0	194.5	17, 20 $trans(J({}^{31}P_{-}^{13}C) 45.4 Hz)$ $cis(J({}^{31}P_{-}^{13}C) 10.5 Hz)$	
Ph3AsW(CO)5	CH ₂ Cl ₂	199.7	197.5	17, 20 $cis(J(^{183}W-^{13}C))$ 124 Hz)	
Ph ₃ BiW(CO) ₅	CH ₂ Cl ₂	198.3	197.8	17 $cis(J(^{183}W-^{13}C))$ 126 Hz)	
Ph ₃ SbW(CO) ₅	CH ₂ Cl ₂	199.1	197.0	17 $cis(J(_{21}^{183}W{13}^{13}C)$ 127 Hz)	
(diphos)W(CO) ₄		not observed	204.6	20 $cis(J(^{31}P-^{13}C) 9 Hz)$	
Eto Ph $N - W(CO)_5$ CH_2		202.4	198.6	46	
cis-(PEt ₃) ₂ W(CO) ₄	CH ₂ Cl ₂	204.7	204.4	71 trans($J({}^{31}P_{-}{}^{13}C)$) 15.2 Hz) cis($J({}^{31}P_{-}{}^{13}C)$ 6.3 Hz)	
trans-(PEt ₃) ₂ W(CO) ₄	CH ₂ Cl ₂	204.7		71 $(J(^{31}P-^{13}C) 5 Hz)$	
fac-{Et3P}3W(CO)3	CH ₂ Cl ₂	212.4		20 (J(¹⁸³ W- ¹³ C) 135 Hz) 71 trans(J(³¹ P- ¹³ C) 14 Hz) cis(J(³¹ P- ¹³ C) 5 Hz)	
(CO) ₅ WC(MeNH)Me	C ₆ H ₆ C ₆ H ₆	203.4 203.4	198.9 199.4	25 cis isomer 25 trans isomer	
(CO)5WC(OEt)Me	CHCl ₃	203.4	197.2	23	
(CO) ₅ WC(OH)Me	CH2Cl2	not observed	197.2	29	
(CO) ₅ WC(NH ₂)Me	CHCl ₃	203.8	198.5	23	
(CO) ₅ WC(SMe)Me	C ₆ H ₆	207.4	198.1	25	

Compound	Solvent ^a	δ(CO) ^b		References and remarks	
		δCO) _{trans}	δ(CO) _{cis}		
(CO) ₅ WC(OMe)Me	С ₆ Н ₆	203.6	197.6	27, 25	
	CHCla	203 4	197 2	cis(J(W-C))	
(CO)-WC(OH)Ph	CHACLA	203.5	197.2	20	
$(C(I)_{C}WC(NH_{\alpha})Ph$	CHCla	203.5	198.2	23	
$(CO)_{c}WC(OMe)_{-p}-BrC_{c}H_{4}$	CH ₂ Cl ₂	203.7	197.3	23	
(CO) ₅ WC(OMe)-p-ClC ₆ H ₄	CH ₂ Cl ₂	203.7	197.3	23	
(CO)5WC(OMe)-p-FC6H4	CH ₂ Cl ₂	203.5	197.4	23	
(CO) ₅ WC(OMe)Ph	CHCl3	203.6	197.2	23	
	$CDCl_3/C_6F_6$	204.6	198.6	20, 22	
	CH ₂ Cl ₂	204.2	197.8	23	
(CO)5WC(OMe)-p-CF3C6H4	CH ₂ Cl ₂	203.9	197.1	23	
(CO)5WC(OEt)Ph	CHCl ₃	203.5	197.2	23	
(CO) ₅ WC(OMe)-p-MeC ₆ H ₄	CH ₂ Cl ₂	203.8	197.8	23	
(CO) ₅ WC(OMe)-p-MeOC ₆ H ₄	CH_2Cl_2	203.4	197.9	23	
(CO) ₅ WC[N(CH ₃) ₂]CH ₃	(CH ₃) ₂ CO	204.3	199.7	74	
$(CO)_5WC[N(CH_3)(C_2H_5)]CH_3$	(CH ₃) ₂ CO	204.22	199.7	74	
(two isomers)		204.22	199.9		
(CO) ₅ WC(SeCH ₃)CH ₃	(CH ₃) ₂ CO	205.0	197.8	75	
(π-cycloheptatriene)W(CO) ₃	CH_2Cl_2	211.6	5	39, 71	
(π-cyclooctatetraene)W(CO) ₃	C ₆ F ₅ Br	193.8	3	52	
(π-mesitylene)W(CO) ₃	CH_2Cl_2	212.6	5	39, 71	
(<i>π</i> -hexamethylbenzene)W(CO) ₃	CH ₂ Ci ₂	215.7	7	71	
(π-durene)W(CO) ₃	CH_2Cl_2	213.7	7	39(J(¹⁸³ W- ¹³ C) 189 Hz)	
· · · •	CH_2Cl_2	213.7	7	71	
$(\pi$ -norbornadiene)W(CO) ₄	CHCl ₃	209.4	203.6	15	
Br(CO) ₄ W≡C−−CH ₃	CH ₂ Cl ₂	192.7	T	32	
Cl(CO) ₄ W≡C−CH ₃	CH_2Cl_2	194.0	•	32	
I(CO) ₄ W≡C−−CH ₃	CH ₂ Cl ₂	191.7	7	32	
(π-C ₅ H ₅)W(CO) ₃ Me	CHCl ₃	217.8	239.2	30	
Me MeOCW(CO) ₅	(CH ₃) ₂ CO	203.6	203.0	27 cis(J(¹⁸³ W- ¹³ C) 128 Hz)	
[HW-(CO)-1[Dh-D=N=DDh-]	CHACL	201.4	1989	55	
$(\pi - C_c H_c)W(CO)$ PMe ₂ SnMe ₂	CeHe	223.0		70, 77	
$(\pi - C_c H_c)W(CO) \sim PMe_2 PhSnMe_2$	CeHe	223.2		70.77	
$(\pi - C_c H_c)W(CO)_2 PMe_2 Ph_2 SnMe_2$	CeHe	223.3		70, 77	
$(\pi - C_{\varepsilon} H_{\varepsilon})W(CO)_2 P(OMe)_2 SnMe_2$	C4H4	220.6		70. 77	
$(\pi - C_c H_c)W(CO)_2 P(OPh)_3 SnMe_3$	CeHe	220.5		70, 77	
[(CO); WBr] [Me2N=CHMe]	(CH ₃) ₂ CO	201.9	198.9	74 ^e	
[(CO) ₅ WBr] [Me>N=CHMe]	(CH ₃) ₂ CO	202.0	199.0	74 ^e	
(n-C4H9)4N[W(CO)5I]	CH ₂ Cl ₂	201.9	196.6	55 cis(J(¹⁸³ W- ¹³ C) 129 Hz)	
Manganese compounds					
Mn ₂ (CO) ₁₀	CHCl ₃	223.1	212.9	55 (broad resonances)	
MeMn(CO)5	CH ₂ Cl ₂	213.4	ł	36	
$(\pi - C_5 H_5) Mn(CO)_3$	CH ₂ Cl ₂	225.7		55	
		220.4		19	
	CHCl ₃	224.9		76	
	-	225.1		15	
(π-C ₅ H ₄ CH ₃)Mn(CO) ₃	CH ₂ Cl ₂	225.4		36	
- • • •	CHCl3	224.4		76	
$(\pi - C_5 H_4 CO_2 CH_3) Mn(CO)_3$	CHCl3	222.7		76	
(π-C ₅ H ₄ COCH ₃)Mn(CO) ₃	CHCl ₃	223.2		76	
$(\pi - C_5 H_4 C H_2 C H_3) Mn (CO)_3$	CHCl ₃	224.7		76	

18

compound Solvent ^a		δ(OC)	ь	References and remarks
		$\delta(OC)_{trans}$	δ(OC) _{cis}	
[<i>π</i> -C ₅ H ₄ CH(CH ₃) ₂]Mn(CO) ₃	CHCl ₃	225.1	L	76
[n-C +H4C(CH3)3] Mn(CO)3	CHCl3	225.3		76
$(\pi-C_5H_5)Mn(CO)_2PPh_3$	CHCl3	223.3		76
(π-C ₅ H ₅)Mn(CO) ₂ AsPh ₃	CHCl3	232.4		76
$(\pi - C_5 H_5) Mn(CO)_2 SbPh_3$	CHCl3	230.8	3	76
$(\pi-C_5H_5)Mn(CO)_2P(OPh)_3$	CHCl3	226.4	Ł	76
$(\pi - C_5 H_5) Mn(CO)_2 P(C_6 H_{11})_3$	CHCi3	230.7	7	76
$(\pi-C_5H_5)Mn(CO)$ (diphos)	CHC13	220.5	5	76
O N				
$(\pi-C_{S}H_{5})(CO)Mn \longrightarrow Mn(NO)(\pi-C_{S}H_{5})$)4/1/1 toluene /	268 trans i	somer	1
C	CH_2Cl_2/C_6F_6	217		6740°
0		267		
		214)	mer	1
Rhenium compounds				
Re ₂ (CO) ₁₀	THF	183.7	192.7	55, —60°C
Iron compounds				
Fe(CO) ₅	neat	209.	O	12,88
_	neat	211.	9	$13(J({}^{5}'Fe-{}^{13}C) 23.4 Hz)$
	C ₆ H ₆	213.	6±3	12, 88
	CeHe	210.	5	55
	THF	211.	D	55
	CH ₃ CN	211.	6	55
Fe ₃ (CO) ₁₂	CH ₂ Cl ₂	212.	5	16
(pyridine)Fe(CO)4	THF	217.	0	55
Ph3PFe(CO)4	CH ₂ Cl ₂	213.	4	55(J(³¹ P- ¹³ C) 22 Hz)
$(Ph_3P)_2 Fe(CO)_3$	CH ₂ Cl ₂	214.	3	55(J(³¹ P- ¹³ C) 29.5 Hz)
[(T-C+H)Fe(CO)2]2	CH ₂ Cl ₂	242.	6	10 55°C
	CH ₂ Cl ₂	210.5	274.7	¹⁰ 85°C
		(area 1)	(area 2)	
[(π-C ₅ H ₅)Fe(CO) ₂][Ph ₃ P=N=PPh ₃]	CH ₂ Cl ₂	214.	4	55
I(π·CeHe)Fe(CO)alPFe	(CH ₃) ₂ CO	202.	9	15
$(\pi - C_E H_E)Fe(CO)_2 Br$	CH ₂ Cl ₂	213.	5	38
(,, -33), -(,2-	CHCl3	213.	2	30
(<i>π</i> -CsHs)Fe(CO)2Cl	CH ₂ Cl ₂	213.	3	38
	CHCl3	212.	9	30
(π-C-H-)Fe(CO)-I	CH ₂ Cl ₂	213.	6	38
	CHCl3	213.	6 ^d	30, 19
[(π-C ₅ H ₅)Fe(CN) ₂ (CO)]K	H ₂ O	219.	2	30
$(\pi - C_c H_c)Fe(CO)_2(CN)$	CH ₂ Cl ₂	211.	4	38
	CHCl ₃	211.	1	30
(π-CeH ₅)Fe(CO) ₂ Me	CH ₂ Cl ₂	218.	3	38
	CHCl3	218.	4	30
(<i>π</i> -C ₅ H ₅)Fe(CO) ₂ COCH ₃	CHCl ₃	215.	7	30
$(\pi-C_5H_5)Fe(CO)_2Et$	CH ₂ Cl ₂	218.	6	38
(π-C ₅ H ₅)Fe(CO) ₂ CH ₂ CH=CH ₂	CH ₃ C ₆ H ₅	216.	0	61
(π-C ₅ H ₅)Fe(CO) ₂ GeMe ₃	CH ₂ Cl ₂	213.	2	38
(π-C ₅ H ₅)Fe(CO) ₂ SiMe ₃	CH ₂ Cl ₂	216.	.5	38
$(\pi-C_5H_5)Fe(CO)_2SnMe_3$	CH ₂ Cl ₂	215.	7	38
(π-C5H5)Fe(CO)2(σ-C5H5)	CH ₃ C ₆ H ₅	216.	.1	61
(π-C ₅ H ₅)Fe(CO) ₂ C ₆ F ₅	CH ₂ Cl ₂	214	.6	38
(π-C ₅ H ₅)Fe(CO) ₂ -p-ClC ₆ H ₄	CH ₂ Cl ₂	216	.8	38

Compound	Solvent ^a	-	δ(CO)	Ъ	References and remarks
		δ(CO)	trans	δ(CO) _{cis}	
(π-C ₅ H ₅)Fe(CO) ₂ Ph	CH ₂ Cl ₂	•	217.1		38
(π-C ₅ H ₅)Fe(CO) ₂ COPh	CH ₂ Cl ₂		215.1		38
$(\pi - C_5 H_5) Fe(CO)_2 CH_2 Ph$	CH_2Cl_2		217.9		38
$[(\pi-C_5H_5)Fe(CO)(CNCH_2Ph)_2]Br$	CHCl ₃		212,1		30
(π-C5H5)Fe(CO)2GePh3	CH ₂ Cl ₂		216.3		38
(<i>π</i> -C ₅ H ₅)Fe(CO) ₂ SiPh ₃	CH ₂ Cl ₂		216.5		38
(<i>π</i> -C ₅ H ₅)Fe(CO) ₂ SnPh ₃	CH ₂ Cl ₂		215.7		38
(π-C ₄ H ₄)Fe(CO) ₃			208.6	±1	42
//\/\					
Fe	CS ₂ /acetone 1/1	216.9		210.1	91,78°
		(area]	i)	(area 2)	
co			208.4	±5	42
			211.3		43
Fe(CO) ₃			211.2		41
L _{CH2} CH ₂					
CH₂ ∥					
CH=CH2 CH2 CH=CH2			214.8		60
 H Fe(CO) ₃					
(π-C ₈ H ₈)Fe(CO) ₃	CF ₂ Cl ₂ /CHFCl ₂	:	211.7		
	CF ₂ Cl ₂ /CHFCl ₂	212.4	2)	210.3 (area 1)	
Fe(CO)a (NO)a	neat	206 6	±6		12
ICO) FeCHOINS	THE	200.0	220.2		91
	CHCla		198 4		19
(03r7)r((00)4r	011013		100.4		15
(**************************************		209 9		206.8	59
Two isomers		210.4		207.6	52
BIAHIAPIFe(CO)-(#-C-H-)	CHaCla	210.4	207.8	201.0	55(J(³¹ P-13C) 21 8 Hz)
$(CO)_2 Fe(Me_2 PCH_2 CH_2 PMe_2)$	CeHeMe		221 5		$48(J(^{31}P_{13}C) 6.9 Hz)$
7 8-BoHtoCHPFe(CO) I Med N ⁺	CHaCla		2133		$44(1(^{31}P-^{13}C) 22 H_2)$
[HEe(CO) 1 [PboP=N=PPbo]	CHCh		209.3		55
[HPe(CO)4][HI31=H=HI3] [Fe(CO)2SM2]2	CHCh		205.0		19
$[Fe(OO)_{3}Ome]_{2}$	MON		203.0		15
[AFe3(CO)[] [Me3NA]	CH-Cl-		220 2		55
	CH ₂ Cl ₂		203.0		55
Me					
1					
\nearrow					
(CO), Fe C	C6F6		217.4		68
N N					
l Me					
P(C6H5)3					-0
» ₃ Fe - BF ₂	acetone		210.4		72
\sim					

Compound	Solvent ^a	δ(CO) ^b		References and remarks
		$\delta(CO)_{trans}$	δ(CO) _{cis}	
(C ₇ H ₈)Fe ₂ (CO) ₆	C ₆ H ₆	215.0 (area 1)	212.7 (area 2)	79
(CO) ₃ Fe Fe(CO) ₃	C ₆ H ₆	211.7	(,	79
(CO) ₃ Fe	С ₆ н ₆	213.0 (area 1)	211.4 (area 2)	79
(CO) ₃ Fe Fe(CO) ₃	С ₆ н ₆	211.9		79
(CO) ₃ Fe Fe(CO) ₃	C ₆ H ₆	211.4		79
MeO Fe(CO) ₃	CHCI3	201.0		82
MeO Fe(CO) ₃	CHCl3	201.7		82
(1,3-bexadiene)Fe(CO)3	CS ₂ /acetone 1/1	212.7	2100	91, ^{1°}
(cycloheptatriene)Fe(CO) ₃	CS ₂ /acetone 1/1	(area 1) 211.7 214.8 (area 1)	(area 2) (area 2) (area 2)	93° 91,1° 73°
Ruthenium compounds	CVCI.	100 9	109 7	EE
	UNUI3	150.0 (area 1)	166. <i>1</i> (area 1)	00

Compound	Solventa	δ(CC	9) ^b	References and remarks
		δ(CO) _{trans}	δ(CO) _{cis}	
cis-RuCl ₂ (CO) ₂ (PEt ₃) ₂	CH ₂ Cl ₂	195	.4	$34 (J(^{31}P-^{13}C) 10.6 Hz)$
cis-RuCia (CO)a (PEta-t-Bu)a	CH ₂ Cl ₂	197	4	$34 (J(^{31}P-^{13}C) 10.9 Hz)$
cit-BuClo(CO)o(PMest-Buo)o	CHOCh	198	3	$34 (I(^{31}P_{13}C) 10.7 Hz)$
ris DuCle (OO) (DEt Dh)		102	0	$24 (K^{31} B^{-13} C) 11 0 Hz)$
cis-RuCi2(CO)2(PEt2Ph)2		193.	.9	$34(3(P^{-1}C)11.0HZ)$
<i>cis</i> -RuCi ₂ (CO) ₂ (P-n-Bu ₂ -t-Bu) ₂	CH ₂ Cl ₂	197	.3	34 (3(-1-0)11.0 Hz)
cis-RuCl ₂ (CO) ₂ (PPh ₂ Et) ₂	CH ₂ Cl ₂	193.	.7	34 (J(⁵¹ P— ¹⁵ C) 10.6 Hz)
H3Ru3(CO)9CCH3	C ₆ H ₆	190.1 (area 1)	189.3 (area 2)	54
HRu3(CO)9C6H9		109 1	196.6	52
		198.5,	199.3,	
		199.	7	
(PhaP) Ru(CO)a	CH ₂ Cl ₂	208.	1	55 triplet
				$(J(^{31}P-^{13}C) 17.1 \text{ Hz})$
Osmium compounds				
cis-OsCl ₂ (CO) ₂ (P-n-Pr ₂ -t-Bu) ₂	CH ₂ Cl ₂	177.	6	$34 (J(^{31}P-^{13}C) 7.3 Hz)$
$[Os(CO)NO(C_2H_4)(PPh_3)_2]PF_6$		182.	9	73 (J(³¹ P- ¹³ C) 8 Hz)
Cobalt compounds				
Co ₂ (CO) ₈	CH ₂ Cl ₂	202.	5	55,20°C
$(\pi - C_{\varsigma} H_{\varsigma}) C_{0}(CO)_{2}$	THF	206.	1	55
[Co(CO)4][Ph3P=N=PPh3]	CH_2Cl_2	211.	2	55, 56
		0.01	-	$(J({}^{3}C_{0}-{}^{1}C) 289 Hz)$
$Hg[Co(CO)_4]_2$	$CH_2 Cl_2$	201.	6	55
	THF	203.	1	55
Co3(CO)9CBr	CHCl ₃	186.	2	30
(OC) CO3CCH2OH	CHCl3	200.	6	83
(OC) CO3CCH71HSO4	H2SO4	192.	7	83
(OC) CO2CCH(CH2)OH	CHCl	200.	5	83
$\left[\left(\frac{\partial C}{\partial r} \right)_{r} C_{r} C_{$	H-SO.	193	2	83
	CUCL	200.	- 0	83
$[(OC)_9Co_3CCH(C_6H_5)]HSO_4$	H ₂ SO ₄	192.	4	83
Rhodium compounds				
Rh4(CO)12	CHCl ₃	190.	3	18, 56°C, quintet
Rb4(CO) ₁₂	$CH_2 Cl_2$			$(J(^{103}\text{Rh}-^{13}\text{C}) 17.1 \text{ Hz})$
				69, 78, -65°C
		183.	4	triplet (J(103 Rh-13C) 35 Hz
		181.	8 }	doublet $(J(^{103}Rh-^{13}C) 75 H)$
		175.	5 J	doublet $(J(^{103}Rh-^{13}C) 64 H)$
m-C-H-)Rh(CO)a	CHCI	190 (9	aountet (J(RhC) 62 H
(#-C5H5)KA(CO)2	011013	150.	-	(J(¹⁰³ Rh- ¹³ C) 83.5 Hz)
	CH ₂ Cl ₂	193.	2	55 (J(¹⁰³ Rh— ¹³ C) 83 Hz)
[(π-C ₅ H ₅)Rh(CO)]2CO	CH ₂ Cl ₂	203.	В	37, 25°C
	CH ₂ Cl ₂	231.8	(area 1)	$(J(^{103}Rh-^{13}C) 43 Hz)$ 3780° $(J(^{103}Rh-^{13}C) 45 J$
		191.8	(area 2)	(J(103 Rh - 13C) 83 Hz)
(pyridine)Rh(CO) ₂ Cl	CH ₂ Cl ₂	183.	L)	$\int (J(^{103}Rh-^{13}C) 64.5 Hz)$
	• · · · ·	181.	2)	55 (J(103 Rh $-^{13}$ C) 67.3 Hz)
acac)Bh(CO)a	CHaCla	183.	в	$55 (J(^{103}Rh-^{13}C) 71.9 Hz)$
	CH-CI-	190	5	55 (1(103 Rh-13 C) 74 8 Ha)
rngr/kn(CO) (acac)	012012	193.		$(J(^{31}P-^{13}C) 24.8 Hz)$
Ph3As)Rh(CO) (acac)	CH_2Cl_2	188.4	1	$55 (J(^{103}Rh-^{13}C) 73.7 Hz)$

Compound	Solvent ^a	δ(OC) ^b	References and remarks
		$\delta(CO)_{trans} \delta(CO)_{cis}$	
[(Et ₂ Ph)P] ₂ RhCl(CO)	CHCl ₃	179.8	55 ($J(^{103}Rh-^{13}C)$ 64.9 Hz) ($J(^{31}F-^{13}C)$ 9.6 Hz)
[(o-MeC ₆ H ₄) ₃ Sb] ₂ RhCl(CO)	CH ₂ Cl ₂	185.5	55 (J(¹⁰³ Rh- ¹³ C) 68.3 Hz)
(phthalate)Rh ₂ (CO) ₄	CH2Cl2	181.6	55 (J(¹⁰³ Rh- ¹³ C) 72.7 Hz)
$[Rh(CO)_2Cl]_2$	CH ₃ CN	181.30	55 (J(¹⁰³ Rh- ¹³ C) 71.9 Hz)
	C ₆ H ₆	177.80	55 (J(¹⁰³ Rh- ¹³ C) 77.5 Hz)
			18 (J(¹⁰³ Rh- ¹³ C) 68.8 Hz)
$[(C_5H_5N)RhCl(CPh_2)]_2CO$	CH ₂ Cl ₂	206.5	28
		000 4	triplet $(J(RnC) 47.3 Hz)$
$[(\pi - C_5 H_5) Rh(CPh_2)]_2 CO$	CH ₂ Cl ₂	223.4	28 triplet (J(¹⁰³ Rh— ¹³ C) 42.4 Hz)
$(\pi - C_5 H_5)_3 Rh_3 (CO) [(C_6 F_5)_2 C_2]$	CH ₂ Cl ₂	217.8	49 102
······································			triplet $(J(^{103}Rh-^{13}C) 48.5 Hz)$
$(\pi-C_5H_5)_3Rh_3(CO)(Ph_2C_2)$	CH ₂ Cl ₂	236.0	49, room temperature, quartet $(J(^{103}Rh-^{13}C) 38.7 Hz)$
	CH ₂ Cl ₂	241.6	49, -88° C, triplet of doublets ($J(^{103}$ Rh $-^{13}$ C) 43.7 Hz)
$(\pi - C_5 H_5)$ RhRhRh($\pi - C_5 H_5$)		(J(¹⁰³ Rh— ¹³ C) 28.4 Hz)
	CH ₂ Cl ₂	221.1	55, triplet (J(¹⁰³ Rh— ¹³ C) 41.4 Hz)
Iridium compounds			
(π-C ₅ H ₅)Ir(CO) ₂	THF	173.8	55
Nickel compounds			
Ni(CO)4	neat	191.2	19, 92
	C ₆ H ₆	191.6 ± 5	12,88
(diphos)Ni(CO) ₂	CHCl ₃	200.7	55
$(Ph_3P)_2Ni(CO)_2$	CHCl ₃	199.4	55 31 13
$[(PhO)_3P]_2Ni(CO)_2$	DMF	195.6	55, triplet $(J(^{P}-^{C}) 3 Hz)$
	CHCl ₃	194.7	15
$[(\pi - C_5 H_5)Ni(CO)]_2$	CH ₂ Cl ₂	225.2	55

^aNo distinction will be made between deuterated and nondeuterated solvents. ^bTh = 2-thienyl group. ^cFu = 2-furanyl group. ^d If values of $\delta(C)$ are reported in the same solvent in different papers and the results agree \pm 0.5 ppm, an average value is listed. ^e The structure of the compound is not definitely known.

Acknowledgements

The authors are indebted to Mr. William Wright and Miss Kathy Norton for their capable assistance with the manuscript. Some of the research was supported by the National Science Foundation under Grant GP-33267X.

References

- 1 J.B. Stothers, Carbon-13 NMR Spectroscopy, Academic Press, New York, 1972.
- 2 F. Basolo and R.G. Pearson, Mechanisms of Inorganic Reactions, 2nd ed., Wiley, New York, 1967.
- 3 F. Basolo, Chem. Brit., 5 (1969) 505.
- 4 R.D.W. Kemmitt and J. Burgess, Inorg. React. Mech. (Specialist Period. Rep. J. Chem. Soc.), 1 (1971) 265.
- 5 R.D.W. Kemmitt and J. Burgess, Inorg React. Mech. (Specialist Period. Rep. J. Chem. Soc.), 2 (1972) 247.
- 6 H. Werner, Angew. Chem., Internat. Edit., 7 (1968) 930.
- 7 D.A. Brown, Inorg. Chim. Acta Rev., 1 (1967) 35.
- 8 R.J. Angelici, Organometal. Chem. Rev., 3 (1968) 173.
- 9 G. Reichenbach. J. Organometal. Chem., 31 (1971) 103.
- 10 J.R. Wilkinson, T. Yamamoto and L.J. Todd, unpublished results.
- 11 F.A. Cotton, A. Danti, J.S. Waugh and R.W. Fessenden, J. Chem. Phys., 29 (1958) 1427.
- 12 R. Bramely, B.N. Figgis and R.S. Nyholm, Trans. Faraday Soc., 58 (1962) 1893.
- 13 B.E. Mann, J. Chem. Soc., Chem. Commun., (1971) 1173.
- 14.J.P. Jesson and P. Meakin, J. Amer Chem. Soc., 95 (1973) 1344.
- 15 G.M. Bodner and L.J. Todd, Inorg. Chem., 13 (1974) 1335
- 16 O.A. Gansow, A.R. Burke and W.D. Vernon, J. Amer. Chem. Soc., 94 (1972) 2550.
- 17 O.A. Gansow, B.Y. Kimura, G.R. Dobson and R.A. Brown, J. Amer. Chem. Soc., 93 (1971) 5922.
- 18 F.A. Cotton, L. Kruczynski, B.L. Shapiro and L.F. Johnson, J. Amer. Chem. Soc., 94 (1972) 6191.
- 19 P.C. Lauterbur and R.B. King, J. Amer. Chem. Soc., 87 (1965) 3266.
- 20 P.S. Braterman, D.W. Milne, E.W. Randall and E. Rosenberg, J.Chem. Soc. Dalton, (1973) 1027.
- 21 J.P. Collman and S.R. Winter, J. Amer. Chem. Soc., 95 (1973) 4089.
- 22 J.A Connor, E.M. Jones, E.W. Randall and E. Rosenberg, J. Chem. Soc., Dalton, (1972) 2419.
- 23 G.M. Bodner, S.B. Kahl, K. Bork, B.N. Storhoff, J.E. Wuller and L.J. Todd, Inorg. Chem., 12 (1973) 1071.
- 24 D.J. Ciappenelli, F.A. Cotton and L. Kruczynski, J. Organometal. Chem., 50 (1973) 171.
- 25 C.G. Kreiter and V. Formacek, Angew. Chem. Int. Ed., 11 (1972) 141.
- 26 F.R. Kreissl, E.O. Fischer, C.G. Kreiter and K. Weiss, Angew. Chem. Int. Ed., 12 (1973) 563
- 27 F.R. Kreissl, E.O. Fischer, C.G. Kreiter and H. Fischer, Chem. Ber., 106 (1973) 1262.
- 28 T. Yamamoto, A.R. Garber, J.R. Wilkinson, C.B. Boss, W.E. Streib and L.J. Todd, J. Chem. Soc., Chem. Commun., (1974) 354.
- 29 E.O. Fischer, G. Kreis and F.R. Kreissl, J. Organometal. Chem., 56 (1973) C37.
- 30 L.F. Farnell, E.W. Randell and E. Rosenberg, J. Chem. Soc., Chem. Commun., (1971) 1078.
- 31 J.W. Wilson and E.O. Fischer, J. Organometal. Chem., 57 (1973) C63.
- 32 E.O. Fischer. G. Kreis, C.G. Kreiter, J. Müller, G. Huttner and H. Lorenz, Angew. Chem. Int. Ed., 12 (1973) 564.
- 33 O.A. Gansow and B.Y. Kimura, J. Chem. Soc., Chem. Commun., (1970) 1621.
- 34 D.F. Gill, B.E. Mann and B.L. Shaw, J. Chem. Soc., Dalton, (1973) 311.
- 35 D.E. Axelson, C.E. Holloway and A.J. Oliver, Inorg. Nucl. Chem. Lett., 9 (1973) 885.
- 36 O.A. Gansow, A.R. Burke and G.N. LaMar, J. Chem. Soc., Chem. Commun., (1972) 456.
- 37 J. Evans, B.F.G. Johnson, J. Lewis and J.R. Norton, J. Chem. Soc., Chem. Commun., (1973) 79.
- 38 O.A. Gansow, D.A. Schexnayder and B.Y. Kimura, J. Amer. Chem. Soc., 94 (1972) 3406.
- 39 B.E. Mann, J. Chem. Soc., Chem. Commun., (1971) 976.
- 40 E.W. Randall, personal communication.
- 41 G.F. Emerson, K. Ebrlich, W.P. Giering and P.C. Lauterbur, J. Amer. Chem. Soc., 88 (1966) 3172.
- 42 H.G. Preston, Jr. and J.C. Davis, Jr., J. Amer Chem. Soc., 88 (1966) 1585.
- 43 H. Retcotsky, E.N. Frankel and H.S. Gutowsky, J. Amer Chem. Soc., 88 (1966) 2710.
- 44 D.C. Beer and L.J. Todd, J. Organometal, Chem., 55 (1973) 363.
- 45 C.G. Kreiter and M. Lang, J. Organometal. Chem., 55 (1973) C27.
- 46 F.R. Kreissl, E.Q. Fischer and C.G. Kreiter, J. Organometal. Chem., 57 (1973) C9.
- 47 G. Rigatti, G. Boccalon, A. Ceccon and G. Giacommeti, J. Chem. Soc., Chem. Commun., (1972) 1165.
- 48 M. Akhtar, P.D. Ellis, A.G. MacDiarmid and J.D. Odom, Inorg. Chem., 11 (1972) 2917.
- 49 T. Yamamoto, A.R. Garber, G.M. Bodner and L.J. Todd, J. Organometal. Chem., 56 (1973) C23.
- 50 K. Noack and M. Ruch, J. Organometal. Chem., 17 (1969) 309.
- 51 R.D. Adams and F.A. Cotton, Inorg Chim. Acta, 7 (1973) 153.
- 52 E.W. Randall, E. Rosenberg, and L. Milone, J. Chem. Soc., Dalton, (1973) 1672.
- 53 M. Evans, M. Hursthouse, E.W. Randall, E. Rosenberg, L. Milone and M. Valle, J. Chem. Soc., Chem. Commun., (1972) 545.

- 54 A.J. Canty, B.F.G. Johnson, J. Lewis and J.R. Norton, J. Chem. Soc., Chem. Commun., (1972) 1331.
- 55 J.R. Wilkinson, A.R. Garber and L.J. Todd, unpublished data.
- 56 E.A.C. Lucken. K. Noack and D.F. Williams, J. Chem. Soc., A, (1967) 148.
- 57 F. Calderazzo, E.A.C. Lucken and D.F. Williams, J.Chem. Soc., A, (1967) 154.
- 58 L.J. Todd, Pure Appl. Chem., 30 (1972) 587.
- 59 D.C. Beer and L.J. Todd, J. Organometal. Chem., 36 (1972) 77.
- 60 W.E. Billups, L.P. Lin and O.A. Gansow, Angew. Chem. Int. Ed., 11 (1972) 637.
- 61 D.J. Chappenelli, F.A. Cotton and L. Krucznski, J. Organometal. Chem., 42 (1972) 159.
- 62 G.C. Levy and G.L. Nelson, Carbon-13 Nuclear Magnetic Resonance for Organic Chemists, Wiley-Interscience New York, 1972.
- 63 D.F. Keeley and R.E. Johnson, J.Inorg. Nucl. Chem., 11 (1959) 33.
- 64 J.P. Coliman, J.N. Cawse and J.I. Brauman, J.Amer. Chem. Soc., 94 (1972) 5905.
- 65 J.A. Pople, Mol. Phys., 7 (1964) 301.
- 66 J.G. Bullitt, F.A. Cotton and T.J. Marks, J. Amer. Chem. Soc., 92 (1970) 2155.
- 67 R.M. Kirshner, T J. Marks, J.S. Kristoff and J.A. Ibers, J.Amer. Chem. Soc., 95 (1973) 6602.
- 68 D.J. Cardin, B. Cetinkaya, E. Cetinkaya, M.F. Lappert, E.W. Randall and E. Rosenberg, J. Chem. Soc., Dalton, (1973) 1982.
- 69 J. Evans, B.F.G. Johnson, J. Lewis, J.R. Norton and F.A. Cotton, J Chem. Soc., Chem. Commun., (1973) 807.
- 70 T.A. George and D.C. Turnipseed, Inorg. Chem., 12 (1973) 394.
- 71 B.E. Mann, J. Chem. Soc., Dalton, (1973) 2012.
- 72 J. Evans, D.V. Howe, B.F.G. Johnson and J. Lewis, J. Organometal. Chem., 61 (1973) C48.
- 73 B.F.G. Johnson and J.A. Segal, J. Chem. Soc., Chem. Commun., (1972) 1312.
- 74 E.O. Fischer, K.R. Schmid, W. Kalbfus and C.G Kreiter, Chem. Ber., 106 (1973) 3893.
- 75 E.O. Fischer, G. Kreis, F.R. Kreissl, C.G. Kreiter and J. Muller, Chem. Ber., 106 (1973) 3910.
- 76 P.V. Petrovskii, E I. Fedin, L.A. Fedorov, A.G. Ginzburg, V N. Setkina and D.N. Kursanov, Dokl. Akad. Nauk SSSR, 210 (1973) 605.
- 77 T.A. George, personal communication.
- 78 B.F.G. Johnson, personal communication.
- 79 G. Deganello, J. Organometal. Chem., 59 (1973) 329.
- 80 F A. Cotton, B.G. DeBoer and T.J. Marks, J. Amer. Chem. Soc, 93 (1971) 5069.
- 81 E. Rosenberg, D. Harris and J.D. Roberts, Abstr. 6th Internal. Conf. Organometal. Chem., Amherst. Mass., August 1973 (No. 256).
- 82 R.E. Ireland, G.G. Brown, Jr., R.H. Stanford, Jr. and T.C. McKenzie, J.Org. Chem., 39 (1974) 51.
- 83 D. Seyferth, G.H. Williams and D.D. Traficante, J. Amer. Chem. Soc., 96 (1974) 604.
- 84 T.C. Farrar and E.D. Becker, Pulse and Fourier Transform NMR, Academic Press, New York, 1971.
- 85 K. Noack, Helv. Chim. Acta, 47 (1964) 1064.
- 86 G. Bor, Spectrochim. Acta, 19 (1963) 2065.
- 87 E.R. Corey and L.F. Dahl, Inorg. Chem., 1 (1962) 521.
- 88 R. Bramely, B.N. Figgs and R.S. Nyholm. J. Chem. Soc., A, (1967) 861.
- 89 O.A. Gansow, A.R. Burke and W.D. Vernon, Abstr. 164th Amer. Chem. Soc. Meeting, New York, August, 1972, INOR-108.
- 90 D.E. Axelson, personal communication.
- 91 L. Kruczynski and J. Takats, J. Amer. Chem, Soc., 96 (1974) 932.
- 92 J B. Stothers and P.C. Lauterbur, Can. J. Chem., 42 (1964) 1563

Note added in proof

A review article containing metal carbonyl chemical shift and coupling constant information has appeared recently (B.E. Mann, Advan. Organometal. Chem., 12 (1974) 135).

Information on some platinum carbonyl compounds has been reported (M.H. Chisholm, H.C. Clark, L.E. Manzer, J.B. Stothers and J.E.H. Ward, J. Amer. Chem. Soc., 95 (1973) 8574). The chemical shift values are at high field (159-177 ppm) as expected (see Fig. 3).

It should be noted that the trends outlined in Section IVA do not apply for certain one-electron ligands. The *trans*-carbonyl resonance of $\text{Re}_2(\text{CO})_{10}$ (see Section V) is at higher field than the *cis*-carbonyl resonance. The observed carbonyl resonance of $(C_3F_7)Fe(\text{CO})_4I$ is also at an unusual high field position.